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Abstract The photosynthetic oxygen evolving complex
(PSII-OEC) and the mitochondrial cytochrome c oxidase
(CcO) not only catalyze anti-parallel reactions (the OEC
oxidizes water to dioxygen, whereas CcO reduces dioxygen to
water), they also share a number of uncanny molecular and
mechanistic similarities. Both feature a redox-active poly-
metallic cluster that includes a key tyrosine, and both utilize a
two-phase mechanism. In one phase the polymetallic cluster
undergoes four sequential one-electron transfers: In the PSII-
OEC, four successive photooxidations of the photosystem II
reaction center P680 (to P680+) allows acceptance of 4×1e-
from the Mn4Ca cluster; in CcO, four reduced cytochrome c
Fe2+ cations donate 4×1e- to the bimetallic center. In the
second phase for each enzyme, the polymetallic cluster
undergoes a single four-electron transfer with the O2/2 H2O
redox couple. Intriguing mechanistic similarities between
these two complex redox enzymes first delineated over a
decade ago by Hoganson/Proshlyakov/Babcock et al. are
updated and expanded in this article.
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Introduction

It has been known for several decades that the oxygen
evolving complex of photosystem II (PSII-OEC) and the
mitochondrial cytochrome c oxidase (Complex IV, or CcO)

catalyze anti-parallel reactions: The PSII-OEC oxidizes water
to dioxygen, whereas CcO reduces dioxygen to water. These
two complex proteins are distinct on a number of levels. CcO
is a mitochondrial inner membrane integral protein that serves
as a redox-driven proton pump. In this reaction,

4Fec
2þ þ O2 þ 8Hi

þ ! 4Fec
3þ þ 2H2Oþ 4Ho

þ

four substrate protons from the matrix (4Hi
+) are incorporated

into the 2 H2O products. The free energy from the
spontaneous redox reaction (ΔG°’ = +0.580 eV (0.815–
0.235) = −53.5 kcal/mol) is utilized to pump four protons
from the matrix to the intermembrane space/cristae lumen
(4Hi

+→ 4Ho
+).

On the other hand, the OEC, part of the chloroplast
thylakoid membrane PSII D1 subunit, catalyzes the
oxidation of water: After four successive photooxidations
of the special pigment in the PSII reaction center (P680),
two water molecules are oxidized to dioxygen.

4P680
þ þ 2H2O ! 4P680 þ O2 þ 4Ho

þ

Due to the extremely high redox potential of ground
state P680 (Rappaport et al. 2002), water is oxidized
spontaneously by the PSII-OEC: ΔG°’ = +0.44 eV (1.26–
0.815) = −41 kcal/mol. The OEC is exposed only to the
outer, lumenal phase, to which it releases four protons
during water oxidation; because it does not take up protons
from the inner, stromal phase, it is not a proton pump. The
OEC portion of PSII passes electrons from water to P680+,
but PSII as a whole is a light-driven water/plastoquinone
oxidoreductase. Although both the OEC and CcO are
metalloproteins, CcO is a heme-copper oxidase, whereas
the OEC is a manganese-calcium oxidase.

Besides these differences, Hoganson, Proshlyakov,
Pressler and Babcock (1998; Proshlyakov et al. 1998)
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pointed out over a decade ago a number of uncanny
similarities between these non-homologous metalloproteins.
Both contain a polymetallic cluster that serves as a four-
electron charge accumulator. This cluster gains (CcO) or
loses (OEC) four electrons, one at a time, via a one-
electron “wire.” Once the polymetallic cluster changes
oxidation state by four, the O2/2 H2O redox conversion is
carried out. In CcO, a bimetallic center containing
cytochrome a3, CuB and a tyrosine catalyzes four-
electron oxygen reduction; electrons are then carried from
the one-electron donor cytochrome c (Fec

2+/3+) into the
bimetallic center via CuA

2+/1+ and cytochrome a (Fea
3+/2+).

The PSII-OEC contains a pentametallic Mn4Ca cluster,
within which three of the Mn cations undergo oxidation
state changes during the photocycle, leading to the four-
electron oxidation of 2 H2O to O2. Electrons are carried
from the Mn4Ca cluster to the one-electron acceptor P680+

via a special tyrosine. Both enzymes contain a redox-
active tyrosine (Y) that shuttles between the reduced
phenol tyr-OH and the oxidized phenoxy radical tyr-O·:
Y288 in CcO and YZ in the OEC. Furthermore, both of
these special tyrosines maintain close contact with a
nearby critical histidine imidazole group: histidine190 in
the OEC (Rappaport and Lavergne 1997; Ahlbrink et al.
1998; Hays et al. 1998; Mamedov et al. 1998), and
histidine284 in CcO (Svensson-Elk et al. 2002)

All of the above knowledge has been in biochemistry
textbooks for a decade or more (see for example Berg et al.
2007; Voet et al. 2008). Furthermore, in the mid-1970s it
became clear that both enzymes functioned in oscillating
four-electron cycles during turnover. Kok described the
OEC S0-S4 cycle in 1970 (Kok et al. 1970; Joliot and Kok
1975), and in 1977 Wikstrom proposed a redox-driven
proton pumping cycle for CcO (Wikstrom 1977). However,
it is only over the last decade or so that the detailed
mechanisms of these two enzymes have begun to be
elucidated. The surprising mechanistic kinship between
CcO and the OEC, first described by Hoganson, Proshlyakov,
Pressler and Babcock (1998; Proshlyakov et al. 1998), was
tentatively added to the CcO pathway nomenclature by
Wikstrom and Verkhovsky in 2006. As was pointed out long
ago (Babcock et al. 1989; Babcock and Wikström 1992;
Babcock 1999), the logic behind this mechanistic kinship is
explained by the fact that both enzymes must solve the
problem of working with the O2/2 H2O four-electron redox
couple, while avoiding the intermediate reactive oxygen
species (superoxide, O2·

−; peroxide, H2O2; and the hydroxyl
radical, OH·), which are all toxic. This is particularly
challenging because the electron wires leading into (CcO)
or out of (OEC) the active site metal clusters comprise one-
electron carriers only. Hence both enzymes have evolved
polymetallic O2/H2O active sites that serve as 1e- ➔ 4e-
charge accumulators. After four sequential one-electron

redox processes, they carry out the four-electron O2/2 H2O
redox conversion, thus avoiding the creation of toxic reactive
oxygen species (Babcock et al. 1989; Babcock and Wikström
1992; Babcock 1999).

Mechanistic parallels between CcO and OEC

What follows is a brief overview of current thinking on the
basic mechanisms of these two important enzymes, updat-
ing the parallel redox cycle schemes first presented by
Hoganson et al. in (1998). Details such as side paths and
kinetic sub-steps have been omitted from diagrams. In some
cases they are included in footnotes, but in general they lie
beyond the scope of this article. Cited references may be
consulted for further discussion of such details.

In the PSII-OEC, the process begins with the photoox-
idation of P680 in the PS II reaction center. Capturing four
successive photons yields four P680+, which pull four
electrons one at a time from the OEC Mn4Ca cluster
(Fig. 1a), via the redox-active YZ(−O·/−OH) intermediary.
The net oxidation state of the cluster increases by four, from
S0 ¼ Mn IIIð Þ3Mn IVð Þ=YZ � OH to S4 ¼ Mn IVð Þ4=Yz � O�
(Clausen and Junge 2004; Haumann et al. 2005; McEvoy
and Brudvig 2004; Howard et al. 2005; Dau and Haumann
2006; Dau and Haumann 2008).1

The S4 state is then equipped to pull four electrons from
two water molecules bound to the pentametallic center,
oxidizing the 2 H2O to dioxygen.

In cytochrome c oxidase (Fig. 1b), the reduced bimetallic
center in the C0 (or R) state binds dioxygen and then
reduces it in a single four-electron transfer step, giving the
C4 (or PM) state2 (Wikstrom and Verkhovsky 2006; Bab-
cock and Wikstrom 1992; Belevich et al. 2006):

C0 ¼ Fea3 IIð Þ=CuB Ið Þ=Y288 � OH to

C4 ¼ Fea3 IVð Þ¼O2�=OH�=CuB IIð Þ=Y288 � O�
Wikstrom and Verkhovsky (2006)

1 Aside from YZ-OH ➔ YZ−O· + H+ + e−, a number of alternative
proposals have been put forth regarding the source of the fourth and
final electron. Some researchers believe that the S4 state contains a
Mn(V) rather than a YZ-O· radical (Clausen and Junge 2004;
Haumann et al. 2005). Sproviero et al. (2008) recently proposed
that the YZ-O· radical in S4 is re-reduced by a fully deprotonated
substrate water (O2−) bound to Mn(IV), yielding the oxyl radical Mn
(IV)−O·−/YZ-OH. This is supported by evidence that absorption of
the fourth photon causes an initial deprotonation event, followed by
electron removal to P680+, giving the unstable fully oxidized state
S4, which has also been called S4’ (Haumann et al. 2005), and most
recently, S4

+ (Dau and Haumann 2008).
2 See Appendix I for a brief outline of what happens if CcO begins in
the fully reduced state [CuA(I)/Fea(II)/Fea3(II)/CuB(I)], as opposed to
the partially reduced “mixed valence” state [CuA(II)/Fea(III)/Fea3(II)/
CuB(I)] discussed above.
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In the C4 state the two oxygen atoms are fully reduced
and the bimetallic center is four-electron oxidized. The
bimetallic center is then reduced from C4 back to C0 by
four successive one-electron steps. Each step transfers an
electron from cytochrome c (Fec

2+) into the bimetallic
center, via CuA

(2+/1+) and cytochrome a (Fea
3+/2+). For each

one-electron step, three things occur: the oxidation state of
the bimetallic center declines by one; a “substrate” proton is
taken into the bimetallic center to protonate either Y288-O:

−

or one of the two reduced oxygen atoms; and a proton is
pumped out of the mitochondrial matrix. Note that for both
OEC and CcO, the polymetallic/tyrosine center is used to
accumulate four successive one-electron transfers, followed
by a single four-electron transfer to the O2/2 H2O redox
couple (Fig. 1).

Figure 2 is an update and expansion of the key Fig. 1 in
Hoganson et al. (1998): Here, parallels between the redox

mechanism of the PSII-OEC3 (Fig. 2a) and CcO (Fig. 2b)
are clarified. In both Schemes, the left side shows four
successive one-electron transfers out of (OEC, 2a) or into
(CcO, 2b) the polymetallic center. For the OEC, these take
place proceeding from the top4 to the bottom of Fig. 2a
(left), and for CcO in Fig. 2b (left), the one-electron steps
proceed from the bottom to the top. Similarly, the right side
of each figure shows two successive two-electron transfers
between the polymetallic center and the O2/2 H2O couple:
bottom to top for OEC, and top to bottom for CcO. In both
cases, the peroxide two-electron intermediates (C2

†, S2
†)

S0

YZ-OHMnD
3+MnB

3+

Net rxn:  4 P680  +   O2  +  4 Ho
+4 P680 +   +  2 H2O

OH2 YZ -O• (H +)MnD
4+MnB

4+

S4

O:2-
OEC

CcO

4 P680 +
4 P680 + 3 Ho

+

2 H2OO2 + Ho
+

oxidation of pentametallic center by 4 P680 +

reduction of pentametallic center by 2 H2O 

Fea3
2+ CuB

1+ Y288 -OH

C0

O2

:O: 2-
..
.. +  OH- Y288 -O•CuB

2+Fea3
4+

C4

4 H i
+

4 Fec
2+

+ 8 Hi
+

  4 Fec
3+

+ 4 Ho
+  + 2 H2O

oxidation of bimetallic center by O2

reduction of bimetallic center by 4 cyt c 2+

4 cyt c 3+    +  2 H2O4 cyt c 2+   +   O2  +  4 H i
+Net rxn:  

4 H i
+

4 Ho
+

1st

2nd

1st

2nd

MnC
3+ MnC

4+

4 Ho
+

OH- O:2-

a

b

Fig. 1 Comparison of the fully oxidized and reduced polymetallic
centers of (a) the oxygen evolving complex, and (b) cytochrome c
oxidase. (a) The key redox-active components in the OEC active site
are three of the four Mn cations, plus tyrosineZ. The remaining Mn
and Ca are redox-inactive. Each photosystem II reaction center
contains only a single P680 that is oxidized four times by the
absorption of four successive photons, along with re-reduction by four
successive electrons from the Mn4Ca center. The initial part of the

proton output path may include arginine357
+; Ho

+ = proton released
into the chloroplast thylakoid lumen (i.e., the outer or external phase
(Silverstein et al. 1993)). (b) The CcO bimetallic center comprises
cytochrome a3, copperB, plus tyrosine288. Ho

+ = proton released into
the mitochondrial intermembrane space (i.e., the outer or external
phase), and Hi

+ = proton taken up from the mitochondrial matrix (i.e.,
the internal phase (Silverstein et al. 1993))

3 A somewhat more detailed structural model of the PSII-OEC redox
cycle is presented in Appendix II.
4 Although the dark resting state of the OEC features only 25% of
Mn4Ca clusters in the fully reduced S0 state and 75% in the S1 state,
for the sake of comparison with CcO, Fig. 2a starts off with the less
stable S0 state.
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are unstable and spectroscopically uncharacterized (but see
Clausen and Junge 2004). The existence of these putative
peroxide intermediates is controversial (Haumann et al.
2008); even if they do exist, they are present for such a
short period of time under normal conditions that the two
2e- steps essentially combine into a single kinetic 4e- step.
On the other hand, it is certainly permissible to consider
from a thermodynamic perspective the impact of breaking
the four-electron process into two two-electron processes,
with a peroxide intermediate (Hoganson et al. 1998).

Importance of tyrosine

It is interesting to speculate as to why evolution twice
arrived at such a similar solution to the 1e-/4e- dioxygen/
water redox problem. Both the OEC and CcO have
polymetallic centers that lose a total of three electrons,
and a tyrosine that undergoes 1e- oxidation. In both cases as
well, the tyrosine helps to mediate the two-electron HOO:-/
2 H2O redox process, and seems to be less involved in the
O2/HOO:

− stage of the reaction. Two potential explanations
for this tyrosine/peroxide-water connection spring to mind.
First of all, electron exchange between phenol oxygen and
peroxide/water oxygens is kinetically fairly facile (Cook
and Depatie 1959), especially in the presence of iron
(Pignatello 1992; De et al. 2006). Secondly, according to
molecular dynamics simulations of PSII-OEC performed by
Sproviero et al. (2008), YZ-O· in the S4 state catalyzes the
formation of the O-O bond by first removing an electron
from a fully deprotonated water (O2−) bound to the Mn4Ca
cluster. In order to do this, the YZ-O·/-OH redox potential
must be sufficiently high (≈ 1.0 V (Tommos and Babcock
1998)) in order to drive this process. On the other hand, in
CcO, Y288-O:

− and CuB
1+ break the O-O bond by donating

a pair of electrons to the bound peroxide intermediate. In
order to do this, the redox potential of Y288 must be
sufficiently low for the reaction to proceed spontaneously.
At the same time, subsequent re-reduction of the Y288-O·
radical must be sufficiently spontaneous in order to drive
the first proton pumping step (C4/PM ➔ C3/F), hence the
prior O-O bond cleaving step must not be too strongly
driven. Proshlyakov et al. (1998) sum up this situation
thusly: “The use of a cross-linked tyrosine, which is
expected to reduce the potential of the radical only
modestly from that of the unmodified residue, looks to be
an efficient strategy by which to accomplish this.”

A few interesting differences between the PSII-OEC YZ

and CcO Y288 are worth discussing here. YZ is generally
classified as part of the OEC one-electron “wire” and not as
part of the pentametallic Mn4Ca cluster (Dau and Haumann
2008; Hoganson and Babcock 1997). In support of this
view, the YZ-histidine190 interaction in the OEC features a

non-covalent YZ-OH ··· :N≡his190 hydrogen bond; upon YZ

oxidation, the hydroxyl proton simply shifts onto the
histidine imidazole N:(YZ-O· ····

+HN≡his190) until subse-
quent YZ reduction and reprotonation. This proton never
leaves the YZ/his190 pair (Rappaport and Lavergne 1997;
Sproviero et al. 2008), and is isolated from the arginine357/
aspartate61 proton wire (McEvoy and Brudvig 2004;
Sproviero et al. 2008) connecting the pentametallic Mn4Ca
cluster to the lumenal space.5 Being part of the one-electron
“wire,” YZ is oxidized and re-reduced in each successive
light-driven S-transition; the fourth and final photon
absorption in the redox cycle is believed to yield a YZ-O·
radical that is a key component of the fully oxidized S4

+

state (McEvoy and Brudvig 2004; Dau and Haumann 2006;
Dau and Haumann 2008; Sproviero et al. 2008). On the

5 Although Hoganson and Babcock (1997) proposed YZ as part of
the proton exit pathway to the lumen, and Umena et al’s most recent
1.9Å structure (Umena et al. 2011) shows a putative proton exit path
emanating away from YZ, experimental evidence currently favors the
“rocking” model in which the Yz proton never leaves this site
(Rappaport and Lavergne 1997; McEvoy and Brudvig 2004;
Sproviero et al. 2008).

Fig. 2 Mechanistic details of the O2/2 H2O redox cycles for (a) the
oxygen evolving complex, (b) cytochrome c oxidase/mixed valence,
(c) cytochrome c oxidase/fully reduced, and (d) alternative oxidase.
The left side of each figure shows four successive one-electron
transfer steps out of (A) and into (B–C) the polymetallic center;
electrons travel one-at-a-time along an electron “wire” comprising (A)
YZ

O·/OH/P680+/0, and (B/C) cyt a3+/2+/CuA
2+/1+/cyt c3+/2+. The right

side of each figure shows two successive two-electron transfer steps
(A) from the O2/2 H2O redox couple into the polymetallic center, and
(B/C) from the bimetallic center into the O2/2 H2O redox couple.
Bracketed intermediates marked {X†} are transient, kinetically
unstable, and spectroscopically uncharacterized. a OEC: adapted
from Fig. 4 in McEvoy and Brudvig 2004, Fig. 2 in Howard et al.
2005, Fig. 5 in Dau and Haumann 2008, and Fig. 6 in Sproviero et al.
2008. S0 features a fully reduced Mn4Ca cluster; S1 is one-electron
oxidized, S2 two-electron oxidized, etc. The four-electron oxidized
S4 state has been modeled by some groups with an oxidized Mn(V)
instead of the YZ-O· radical. b CcO/mixed valence: adapted from
Fig. 1 in Wikstrom and Verkhovsky 2006. C0 features a fully reduced
bimetallic center; C1 is one-electron oxidized, C2 two-electron
oxidized, etc. The alternate state names (R, A, PM, etc.) are those
often employed by Wikstrom et al. The scheme here depicts the redox
cycle starting from the partially reduced “mixed valence” enzyme, in
which the bimetallic center is reduced (Fea3

2+/CuB
1+) and the electron

input “wire” is oxidized (CuA
2+/Fea

3+). c CcO: starting with the fully
reduced enzyme “wire” (CuA

1+/Fea
2+), the fourth and final electron

removed from the bimetallic center comes from cytochrome a rather
than from Y288-OH, giving a fully oxidized C4’ state (see Appendix I).
This C4’ (or PR) state is unique; protonation of CuB-OH- and reduction
of Fea

3+ (along with proton pumping) yields the C3 state, and the three
remaining reduction steps and states are then identical to those in (B)
above. d A model for alternative oxidase, adapted from Fig. 2
(mechanism III) in Affourtit et al. 2002. Oxidation of the bimetallic
center by O2 (right side) closely resembles CcO. The left side, reduction
of the bimetallic center by 2 QH2, differs from CcO: the steps involve
two successive 2e- transfers (as opposed to four 1e- transfers), and they
do not feature proton pumping

b
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other hand, Y288 in CcO differs from YZ in the OEC in two
key ways: First, Y288 is covalently attached to the his284
imidazole ring (Svensson-Elk et al. 2002). Second, upon O2

reduction, both a proton and an electron from the tyrosine
phenolic OH group are transferred to the substrate

dioxygen molecule. In this sense, Y288 is considered to
be an integral part of the CcO bimetallic center; Y288 is
oxidized and re-reduced only once, in the C2

† ➔ C4 (PM)
➔ C3 (F) portion of the pathway. (When starting from the
fully reduced CcO complex, Y288 is in fact never oxidized

Mn3+

MnC
4+

MnC
4+

MnC
4+

MnC
4+

MnC
3+

MnC
3+

O2  +  H o
+

H2O

YZ-OHMn3+Mn3+ O=O

form O=O bond; 
2e- to Mn B

4+ /Mn C
4+

}{  S 0
†•O 2

- :O-O:-MnB
4+ MnD

3+ YZ-OH

  form O-O bond; 
H+ to OH - /R 357 , e- to Mn D

4+

{  S 2
†

e- (to P680 +) +
Ho

+ (via R 357
+/D 61

- )

S4 ,
or S 4

+
MnB

4+ MnD
4+ YZ-O• (H +)

YZ-OHMnD
4+MnB

4+ OH-

S3 ,
or S 3

+

e- (to P680 +) +
Ho

+ (via R 357
+/D 61

- )

S2 ,
or S 2

+ OH2MnB
4+ MnD

3+ YZ-OH

e- (to P680 +)

YZ-OHMnD
3+MnB

4+ OH2

e- (to P680 +)
+ Ho

+ (via D 61
- )

}

MnB
3+ MnD

3+ YZ-OH

S0 ,
or S 0

n

S1 ,
or S 1

n

H2O

}{ O:-2 O· - YZ-OHMnD
4+MnB

4+

MnC
4+

1e- from 
O: 2-  to Y Z-O·

Ca+2

Ca+2

OH-

O:-2

O:-2

O:-2

O:-2 O:-2

a

b
Fea3

2+

:O:2-
..
..

OH-

CuB
1+ Y288 -OH

C0 (or R)
O2

C0 •O 2
(or A)

Y288 -OHCuB
1+Fea3

2+ O=O

2e- transfer
cyt a 3 to O 2

Fea3
4+ CuB

1+ Y288 -O:-
C2

† - :O OH{ }

Fea3
3+ CuB

1+ Y288 -OH CC 1
(or E)

OH-

Hi
+

Hi
+ + e-

H2OHi
+

Ho
+

Hi
+

OH- C 2
(or O H)

Y288 -O:-CuB
2+Fea3

3+ H2O

Hi
+ + e-

H2O

Hi
+

Ho
+

Ho
+

Hi
+ Hi

+ + e-

H2OFea3
4+ CuB

2+ Y288 -O:- C 3 (or F)

Hi
+

Hi
+

C 4 (or P M )Y288 -O•CuB
2+Fea3

4+
..
..

:O:2-

Hi
+ + e-Hi

+
Ho

+

2x1e- transfer, from
CuB and Y288  to HOO: -
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(Wikstrom and Verkhovsky 2006), as outlined in Fig. 2c and
Appendix I.)

Before concluding, it is worth noting that mitochondria
in plants and many algae, fungi, and protozoa contain, in
addition to CcO, an alternative terminal oxidase (AOx).

AOx is a non-heme cyanide-insensitive quinol:dioxygen
oxidoreductase that uses a diiron-carboxylate complex to
catalyze the reduction of dioxygen to water, by quinol:
O2 + 2 QH2 ➔ 2 H2O + 2 Q (Wagner and Moore 1997;
Moore et al. 2008). This reaction occurs without any

Fe2+A0 Y275 -OH
O2

A0 ·O2

{ }

OH-Fe4+A4 Y275 -O·Fe3+:O:2-
..
..

  A2Y275 -OHFe3+ OH- OH-

Fe2+

Fe2+ Y275 -OHFe2+ O=O

- :O-OHFe4+ Y275 -O:-Fe2+A2
†

Fe3+

QH2
Q

QH2

Q + 2 H 2O

d

Ho
+

Hi
+ H2O

Hi
+ + e-

Hi
+

Hi
+

H2O

C 1
(or E)

CuB
1+

Fea
2+

Y288 -OHFea3
3+ OH-

Hi
+ + e-Hi

+

Ho
+

OH-

Hi
+ + e-Hi

+

Ho
+

Fea3
3+ Y288 -O:-

Fea
2+

CuB
2+

C 2
(or O H)

C 3 (or F)
..
..

:O:2- CuB
2+

Fea
2+

Y288 -O:-Fea3
4+

Hi
+

Ho
+

Hi
+

Hi
+

..

..
:O:2- CuB

2+

Fea
3+

Y288 -O:- C4 ' (or P R)Fea3
4+ OH-

- :O-OH }{ Fea3
4+

C2
†

Y288 -O:-
Fea

2+

CuB
1+

O=OFea3
2+

C0 ·O 2
(or A) Y288 -OH

Fea
2+

CuB
1+

O2
CuB

1+

Fea
2+

Y288 -OH
C0 (or R)

Fea3
2+

Hi
+

e-

H2O

H2O

c

Fig. 2 (Continued)
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proton pumping. Several models of dioxygen reduction by
AOx feature a tyrosyl phenoxy radical (Affourtit et al.
2002; Marechal et al. 2009); in fact, Y275 was recently
determined to be in a catalytically active position, within 4Å
of the bimetallic active site (Moore AL 2011, Personal
communication, manuscript in preparation). One mechanistic
model in particular (Affourtit et al. 2002) mirrors CcO rather
closely, as seen in Fig. 2d. In this redox cycle, the diferrous
reduced form (A0) binds dioxygen (A0·O2). Transfer of two
electrons yields an unstable ferryl-ferrous bimetallic center
with bound peroxide (A2

†), which undergoes a further two-
electron transfer to give the fully oxidized ferryl-ferric center
with tyrosyl radical and bound OH− + O2− (A4). Re-
reduction of the bimetallic center occurs in two steps:
Binding and oxidation of the first quinol yields the two-
electron reduced diferric/tyrosine center with two bound
hydroxide anions; binding and oxidation of the second
quinol returns the bimetallic center to the fully reduced A0

form, with release of two waters. A comparison to Fig. 2b
shows that analogues of these five intermediates are also
featured in the CcO redox cycle.

Conclusion

In summary, I have updated and expanded the intriguing
structural and mechanistic parallels between water oxidation
by the photosynthetic oxygen evolving complex, and oxygen
reduction by the mitochondrial cytochrome c oxidase, first
presented by Hoganson, Proshlyakov, Pressler, and Babcock
in 1998 (Proshlyakov et al. 1998). Cognizance of these
parallels leads to a number of conclusions. First, applying the
Kok S0-S4 OEC redox state sequence to CcO yields the C0-
C4 sequence (Wikstrom and Verkhovsky 2006). This C0-C4

redox state nomenclature for CcO is much more informative
than the more common alphabetical labels (R, A, P, F, O, E).
First of all, the C0-C4 subscripts give unambiguous knowl-
edge of the net redox state of the bimetallic center. The
alphabetical labels not only lack such information content,
they are actually chemically misleading: P stands for peroxy,
but the two oxygen atoms in this state are fully reduced and
unbonded; F stands for ferryl, but the ferryl Fe4+ ion is also
found in the earlier P state; O stands for oxidized, but the
two earlier F and P states are more oxidized than the O state.
For these reasons, adoption of the Kok-Joliot style C0-C4

nomenclature for CcO redox states is well-advised.
Lastly, the evolutionary and chemical significance of

the OEC/CcO mechanistic parallels are intriguing. Rec-
ognition of this could not only bridge the distinct OEC
and CcO research communities, it could also help
researchers as they craft mechanistic proposals regarding
the O2/2 H2O redox process. Cognizance of these
mechanistic parallels could also guide future projects in

the design of more effective chemical and biochemical
catalysts for water oxidation.

Appendix I: cytochrome c oxidase in the fully reduced
form

The mechanism depicted in Fig. 2b applies to CcO starting
out in the “mixed valence” (R) state, in which the electron
input groups CuA(II) and Fea(III) are oxidized while the
bimetallic center Fea3(II) and CuB(I) is reduced. If instead,
CcO begins in the fully reduced state [CuA(I)/Fea(II)/
Fea3(II)/CuB(I)], then the oxidation proceeds slightly differ-
ently (Wikstrom and Verkhovsky 2006) after O2 binding.
Instead of C4, which features the Y288-O· radical in the
fully oxidized form, the final electron is removed from
cytochrome a in state C4’ (or PR; see Fig. 2c):

C4
0 ¼ Fea IIIð Þ=Fea3 IVð Þ¼O2�=OH�=CuB IIð Þ=Y288�O:�

The reduction phase then begins by re-reducing cyto-
chrome a and protonating CuB-OH- to reach state C3 (or F);
this and the remaining states are identical to those in the
mixed valence redox cycle (Fig. 2b).

C3
0 ¼ Fea IIð Þ=Fea3 IVð Þ¼O2�=OH�=CuB IIð Þ=Y288�O:�

The C3’ state converts to the “normal path” C3 state by
protonation of Y288-O:

−, coupled to proton pumping.

Appendix II: details of the OEC pentametallic center
and redox cycle

Two recent structural studies of the PSII-OEC using
EXAFS (Yano et al. 2006) and x-ray crystallography at
1.9Å resolution (Umena et al. 2011) show the pentametallic
Mn4CaO5(H2O)4 cluster to exist in a distorted chair
configuration (Fig. 3a). The cubane bottom of the chair
includes three Mn, one Ca, and four di-μ-oxo bridges. The
square back of the chair includes the fourth Mn (MnD from
Fig. 3 of Yano et al. 2006); Mn(4) from Fig. 2 of Umena et
al. 2011; and one di-H-oxo bridge. Two of the three Mn in
the cubane structure are redox active: MnB and MnC [Mn
(1) and Mn(3) from Fig. 2 of Umena et al. 2011] can exist
in the +3 or +4 state. MnA (Mn(2)) is redox-inactive,
existing solely in the +4 state.

The chair is distorted because O(5) (starred in Fig. 3a)
has much longer Mn-O bond lengths than all of the other
Mn-O bonds (Umena et al. 2011). While Mn-O bonds
involving the four di-μ-oxo bridges and the two waters
bound to MnD average 2.04±0.14Å, Mn-O(5) bond lengths
average 2.5±0.1Å. Similarly, whereas Ca-O bonds involving
both di-μ-oxo bridges as well as two bound waters average
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2.43±0.05Å, the Ca-O(5) bond length is 2.7Å. Clearly,
O(5) makes longer metal-O bonds than all other oxygens in
the structure. For this reason, Umena et al. (2011) conclude
that O(5) may actually be a hydroxide (OH−) rather than a
bridging oxide (O2−). Furthermore, they hypothesize that
the longer bond lengths may allow this oxygen to come
and go from the cubane structure, i.e., this OH− could

provide one of the two substrate oxygens to be oxidized to
O2 during the redox cycle. This possibility is depicted in
Fig. 3b.

Figure 3b includes only the three redox-active Mn, the
distorted O(5) (as a starred OH−), two waters bound to MnD,
and the D61

−/R357
+ side-chains implicated in the H+ efflux

pathway (McEvoy and Brudvig 2004; Sproviero et al. 2008).
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Fig. 3 a The “chair” structure of the Mn4Ca pentametallic cluster,
adapted from Figs. 3 and 4 in Yano et al. 2006 and Fig. 2 in Umena et
al. 2011. b One of a number of proposals outlining the OEC redox
cycle. MnA in the cubane metallocluster is redox-inactive. Intermedi-
ates S4

+, S2†, and S0†·O2 in the bottom left of the scheme are all
unstable and speculative. Adapted from Fig. 4 in McEvoy and

Brudvig 2004, Fig. 2 in Howard et al. 2005, Fig. 4 in Yano et al.
2006, Fig. 6 in Sproviero et al. 2008, and Fig. 2 in Umena et al. 2011.
A number of mechanistic details of the S4 to S0 transition that are
omitted from this figure, including the identity and function of the
OH− base catalyst, as well as the catalytic proton transfer functions of
arginine-357 and aspartate-61, are discussed in Sproviero et al. 2008
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In the first photooxidation step, MnB is oxidized, O(5) loses
its proton, and a second water is bound to MnD. H

+ efflux
presumably occurs by proton hopping through the H2O-D61

−

pair and/or the O(4)-R357
+ pair, and from there through a

channel out to the lumen. The second photooxidation
removes an electron from MnC, and the third from MnD;
the third step also removes a proton from the substrate water
bound to MnD. The final photooxidation removes an electron
from YZ-OH, and then according to Sproviero et al. (2008),
the tyrosyl radical is reduced by the bound MnD-OH

−, giving
an MnD-O·

− radical whose proton is ejected into the lumen.
At this point the Mn4Ca cluster is in the unstable fully
oxidized S4 state.

Reduction of the Mn4Ca cluster begins with step 5, in
which an O-O peroxy bond is formed by nucleophilic
attack of the O(5):2− on the MnD-O·

− radical, and transfer of
one electron from the -O·− radical to MnD

4+. Mn4Ca
reduction is completed in step 6 by formation of the O=O
pi bond and transfer of two electrons from the O(5):− atom,
one to MnC

4+ and one to MnB
4+. The active site is reset in

step 7 when an incoming water molecule displaces the
bound dioxygen from the O(5) bridging position, becoming
deprotonated in the process.
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